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Abstract In this paper we present a variational approximation method for solving
Troesch’s problem. The existence and the uniqueness of this problem are shown.
Moreover, we construct a sequence of approximate solutions of the problem from the
number of knots of a partition of the domain. Such sequence converges to the exact
solution of the problem. Finally, we analyze some graphical and numerical examples
in order to show the efficiency of our method.
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1 Introduction

The non-linear two-point boundary value problem, Bratu’s equation and Troech’s
problems, occur engineering and science, and they may be used to model some chem-
ical reaction–diffusion and heat transfer processes. In [1] the authors obtained an
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analytical expression pertaining to the concentration of substrate using Homotopy per-
turbation method for all values of the parameters. Mathematical modeling for some
chemical reactions, that are usually accompanied with mass and energy transfer, is
based on material and energy balance. One can generate a set of differential equations
known as the reaction–diffusion problem. The reaction–diffusion equations are paid
more attention in analyzing and designing chemical and catalytic reactors [7]. The
same phenomena exists in electrochemical processes, with the added complexity of a
varying potential field, and considerable research has been done for electrochemical
reactions occurring in the porous electrode [8].

Different techniques for the construction of a curve have been developed in recent
years, for example interpolation by spline functions, based on the minimization of
a certain functional in an adequate Sobolev subspace (see [4–6]). Such a functional
may represent minimal energy, or some physical considerations such as minimiza-
tion of the air of a surface, or minimization of the curvature or variation of curva-
ture (see [4]). These techniques have many applications in CAD, CAGD and Earth
Sciences.

In [2], the authors considered the boundary-value problem, called Troesch’s prob-
lem

u′′ = λ sinh(λu), 0 ≤ x ≤ 1,

with boundary conditions

u(0) = 0, u(1) = 1.

They applied the reproducing kernel method for solving such problem. They used
numerical examples to illustrate the accuracy and implementation of the method. The
analytical result of the equation has been obtained in terms of a convergent series with
easily computable components. This type of problems was also described and solved
by Weibel in [11]. Later in 1976, Troesch in [10] found its numerical solution by
the shooting method. Recently, this problem has been studied extensively. Troesch’s
equation appears in engineering and science, including the modeling of chemical
reaction–diffusion and heat transfer processes.

A variational method is proposed in this work in order to solve Troesch’s prob-
lem in a space of the B-spline functions. The solution is obtained by resolving a
sequence of boundary-value problems in some spaces of B-splines functions. We
study some characterizations of these functions, and we shall express them as some
linear combinations of the B-spline basis functions. Under adequate hypotheses,
we prove that such sequence converges to the exact solution of the problem. We
present some graphical and numerical examples in order to show the efficiency of our
method.

The remainder of this paper is organized as follows. In Sect. 2, after briefly recall
on some preliminaries and notations we formulate the problem. Section 3 is devoted
to study how to construct and to compute some sequence of solutions of the problem
from the number of knots in the partition of the domain. In sect. 4 we prove that such
sequence converges to the exact solution of the problem. Finally, in sect. 5 we present
some numerical examples to illustrate the method.
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2 Preliminaries and formulation of the problem

For any n ∈ N
∗ and given a, b ∈ R with a < b, we consider the interval I = (a, b)

and we denote by Pn(I ) the linear space of the real polynomials with a degree less
than or equal to n.

Now, let H1(I ) be the usual Sobolev space of (classes of) functions u belonging
to L2(I ), together with the derivative u(1), in the distribution sense. This space is
equipped with the inner semi-products

(u, v)� =
∫

I
u(�)(x) v(�)(x)dx, 0 ≤ � ≤ 1,

being u(0) = u, u(1) = u′ and u(�) the derivative function of order �, the corresponding

semi-norms |u|� = ((u, u)�)
1/2 , 0 ≤ � ≤ 1 and the norm ‖u‖ =

⎛
⎝∑

�≤1

|u|2�
⎞
⎠

1/2

.

We denote by ‖u‖0 =
(∫

I
u(x)2dx

)1/2

the norm of L2(I ).

Let Tn = {x0, . . . , xn} be a subset of distinct points of [a, b], with xi = a+ i
b − a

n
,

i = 0, . . . , n. We denote by S2
3 (Tn) the space of splines functions of degree 3 and class

2 constructed over the partition Tn , that is, S2
3 (Tn) is given by

S2
3 (Tn) = {

s ∈ C2[a, b] | s|([xi−1,xi ]) ∈ P3([xi−1, xi ]), i = 1, . . . , n
}
.

It is known that dim S2
3 (Tn) = n + 3.

Now, let {Bn
i : i = 1, . . . , n + 3} be the basis functions of B-splines of S2

3 (Tn)

constructed from the knots

x−2 = x−1 = x0 < x1 < . . . < xn = xn+1 = xn+2.

It is verified that S2
3 (Tn) is a subset of H2(I ).

Let f ∈ L2(I × I ) and F be the functional defined in H2(I ) by

Fu(x) = f (x, u(x)), x ∈ I.

For each u ∈ H1(I ), we have that Fu belongs to L2(I ).
We consider the problem: Find σ ∈ C2(I ) such that

{
Lσ = Fσ in I
σ(a) = α, σ (b) = β

(1)

being Lu = u′′ for all u ∈ C2(I ) and α, β ∈ R.
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3 Computing the approximating solution

We are going to show in this section how to construct the solution of our problem. To
this end, let σ0 = 1 and σ1 ∈ S2

3 (T1) be the solution of the problem: Find σ1 ∈ S2
3 (T1)

and (λ1
1, λ

1
2) ∈ R

2 such that
⎧⎨
⎩

−
∫ b

a
σ ′

1(x) u′(x)dx + λ1
1u(a) + λ1

2u(b) =
∫ b

a
f (x, σ0(x)) u(x)dx, ∀u ∈ S2

3 (T1),

σ1(a) = α, σ1(b) = β

Taking σ1(x) =
4∑

i=1

ci B1
i (x), by linearity we have that

−
4∑

i=1

(∫ b

a
(B1

i )′(x) (B1
j )

′(x)dx

)
ci + B1

j (a) λ1
1+B1

j (b) λ1
2 =

∫ b

a
f (x, 1) B1

j (x)dx,

for j = 1, . . . , 4, and
4∑

i=1

ci B1
i (a) = α,

4∑
i=1

ci B1
i (b) = β.

This is a linear system with unknowns c1, . . . , c4, λ
1
1, λ

1
2 that, in matrix form, it can

be expressed as (
A1 Dt

1
D1 0

) (
Ct

1
λt

1

)
=

(
bt

1
μt

)

being

A1 =
(

−
∫ b

a
(B1

i )′(x) (B1
j )

′(x)dx

)
1≤i≤4
1≤ j≤4

;

D1 =
(

B1
j (ai )

)
i=1,2

j=1,...,4
with a1 = a, a2 = b;

C1 = (c1, . . . , c4) ;
λ1 = (

λ1
1, λ

1
2

) ;
b1 =

(∫ b

a
f (x, 1) B1

j (x)dx

)
j=1,...,4

;
μ = (α, β)

Reasoning by induction, we assume that the approximation σn−1 ∈ S2
3 (Tn−1),

σn−1(a) = α and σn−1(b) = β, is constructed and we look for σn ∈ S2
3 (Tn) and

(λn
1, λ

n
2) ∈ R

2 such that

⎧⎨
⎩

−
∫ b

a
σ ′

n(x) u′(x)dx+λn
1u(a)+λn

2u(b)=
∫ b

a
f (x, σn−1(x)) u(x)dx, ∀u ∈ S2

3 (Tn)

σn(a) = α, σn(b) = β.

(2)
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Hence, σn(x) =
n+3∑
i=1

ci Bn
i (x) and by reasoning as to compute σ1, we obtain a linear

system with unknowns c1, . . . , cn+3, λ
n
1, λn

2 that, in matrix form, it can be expressed
by

(
An Dt

n
Dn 0

) (
Ct

n
λt

n

)
=

(
bt

n
μt

)

being

An =
(

−
∫ b

a
(Bn

i )′(x) (Bn
j )

′(x)dx

)
1≤i≤n+3
1≤ j≤n+3

;

Dn =
(

B1
j (ai )

)
i=1,2

j=1,...,n+3
with a1 = a, a2 = b;

Cn = (c1, . . . , cn+3) ;
λn = (

λn
1, λ

n
2

) ;
bn =

(∫ b

a
f (x, σn−1(x)) Bn

j (x)dx

)
1≤ j≤n+3

;
μ = (α, β).

4 Convergence result

In order to prove that the constructed sequence of approximate functions (σn)n∈N

converges to the solution of problem (1), we need to introduce the following results.
Firstly, let us consider the subsets

H = {v ∈ S3(Tn) | v(a) = α, v(b) = β},
H0 = {v ∈ S3(Tn) | v(a) = v(b) = 0}.

Lemma 1 We assume that the sequence σn−1 ∈ S3(Tn) has been constructed. Then
there exists a unique σn ∈ H such that Jn(σn) ≤ Jn(v), for all v ∈ H, being Jn the
functional defined from H1(I ) into R by

Jn(v) =
∫ b

a
v′(x)2dx + 2

∫ b

a
f (x, σn−1(x))v(x)dx .

Moreover σn verifies for all v ∈ H0

∫ b

a
σ ′

n(x)v′(x)dx = −
∫ b

a
f (x, σn−1(x))v(x)dx . (3)

Proof Let us consider the bilinear form ã defined form S3(Tn) × S3(Tn) into R by

ã(u, v) = 2(u, v)1 + 2u(a)v(a) + 2u(b)v(b).
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It is obvious that ã is symmetric, continuous and endowed with a norm in S3(Tn)

defined by [[v]] = ã(v, v)1/2, which is equivalent to the Sobolev’s norm ‖ · ‖ in
S3(Tn) ⊂ H1(I ). Hence, ã is a H1(I )-elliptic and the subset H is convex, bounded
and not empty.

Now, the application defined by

ϕ(v) = −2
∫ b

a
f (x, σn−1(x))v(x)dx

is linear and continuous in S3(Tn). So, by applying the Lax–Milgram theorem, we
deduce that there exists a unique σn ∈ H such that ã(σn, v) = ϕ(v), for all v ∈ H0.

Furthermore, σn is characterized to be the minimum in H of the functional

Φ(v) = 1

2
ã(v, v)−ϕ(v) which, in turn, is equivalent to minimizes in H the functional

Jn given by

Jn(v) = Φ(v) − v(a)2 − v(b)2.

	

Lemma 2 There exists a unique (σn, λ1, λ2) ∈ H × R

2 verifying (2), being σn the
solution of (3).

Proof Let {ϕ1, . . . , ϕn+1} be the Lagrange basis functions of S3(Tn) associated with
the functionals {Φ1, . . . , Φn+1} defined by Φi (v) = v(xi−1), for i = 1 . . . , n + 1,
Φn+2(v) = v′′(a), Φn+3(v) = v′′(b).

Given u ∈ S3(Tn) we define

w = u − u(a)ϕ1 − u(b)ϕn+1,

then,

w(a) = u(a) − u(a)ϕ1(a) − u(b)ϕn+1(a) = 0,

w(b) = u(b) − u(a)ϕ1(b) − u(b)ϕn+1(b) = 0,

because ϕ1(a) = ϕn+1(b) = 1 and ϕ1(b) = ϕn+1(a) = 0.
Hence, we deduce that w ∈ H0 and using (3), one has

∫ b

a
σ ′

n(x)w′(x)dx = −
∫ b

a
f (x, σn−1(x))w(x)dx,

with σn is the solution of (3), and we obtain
∫ b

a
σ ′

n(x)u′(x)dx −
(∫ b

a
σ ′

n(x)ϕ′
1(x)dx

)
v(a) −

(∫ b

a
σ ′

n(x)ϕ′
n+1(x)dx

)
v(b)

= −
∫ b

a
f (x, σn−1(x))u(x)dx +

(∫ b

a
f (x, σn−1(x))ϕ1(x)dx

)
v(a)

+
(∫ b

a
f (x, σn−1(x))ϕn−1(x)dx

)
v(b).
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Now, let consider

λn
1 = −

∫ b

a

(
f (x, σn−1(x))ϕ1(x) + σ ′

n(x)ϕ′
1(x)

)
dx

λn
2 = −

∫ b

a

(
f (x, σn−1(x))ϕn+1(x) + σ ′

n(x)ϕ′
n+1(x)

)
dx

hence, we obtain (2). The uniqueness can be readily obtained. 	

Theorem 1 If σ is the solution of (1), then it is verified that

lim
n→+∞ ‖σn − σ‖ = 0.

Proof (1) Let h = b − a

n
and Sn be the interpolating spline of σ in S2

3 (Tn) such that

S′′
n (a) = S′′

n (b) = 0, then we have that (see [9])

‖σ − Sn‖ ≤ C h1/2. (4)

Hence, being σn the minimum of Jn in H we have that Jn(σn) ≤ Jn(Sn) and it
follows

|σn|21 + 2(Fσn−1, σn)0 ≤ |Sn|21 + 2(Fσn−1, Sn)0

Then

|σn|21 ≤ |Sn|21 + 2(Fσn−1, Sn − σn)0 (5)

From (3), taking into account that σn − Sn ∈ H0, one can obtain

(σn, σn − Sn)1 = −( f (., σn−1(.)), σn − Sn)0

and, using (5), we deduce that

|σn|21 ≤ |Sn|21 + 2(σn, Sn − σn)1 (6)

On the other hand, it is

|σn|21 − |Sn|21 ≤ |σn − Sn|21 = |σn|21 − 2(σn, Sn)1 + |Sn|21
and, from (6), we have that

|σn|21 ≤ |Sn|21 + |Sn|21 + 2(σn, Sn − σn)1 − 2(σn, Sn)1 + |Sn|21 = 3|Sn|21 − 2|σn|21
we conclude that

|σn|21 ≤ |Sn|21. (7)
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Then, from (4) and Lemma 1, it follows that there exists C > 0 and n0 ∈ N such
that for all n ≥ n0

‖σn‖ ≤ C.

This means that the family (σn)n∈N with n ≥ n0 is bounded in H1(I ). Hence, there
exists a subsequence (σnl )l∈N extracted from such a family, with lim

l→+∞ nl = +∞
and an element σ ∗ ∈ H1(I ) such that

σ ∗ = lim
l→+∞ σnl weakly in H1(I ). (8)

(2) Let us see that σ ∗ = σ , reasoning by reduction to the absurd. In fact, we suppose
that σ ∗ �= σ .
For the continuous injection of H1(I ) into C0([a, b]), there exist γ > 0 and a
non-empty open set W ⊂ I such that

∀x ∈ W ,|σ ∗(x) − σ(x)| > γ,

and as such injection is also compact, then from (8) it follows that

∃l0 ∈ N,∀l ≥ l0,∀x ∈ W ,|σ ∗(x) − σnl (x)| ≤ γ

2
·

Hence, for all l ≥ l0 and all x ∈ W , we have that

|σnl (x) − σ(x)| ≥ |σ ∗(x) − σ(x)| − |σnl (x) − σ ∗(x)| >
γ

2
· (9)

We have that h → 0 as n → +∞, we deduce that, for sufficiently great l, there
exists a point x0 ∈ Tn ∩ W and hence σnl (x0) = σ(x0), which is a contradiction
with (9).

(3) Given that σ ∗ = σ and as H1(I ) is compactly injected in the Sobelev space H0(I ),
we have that

σ = lim
l→+∞ σnl in H0(I ),

and it follows that

lim
l→+∞ |σnl − σ |0 = 0. (10)

So, again using (8) and with σ ∗ = σ , we have that

lim
l→+∞(σnl ,σ )1 = lim

l→+∞
(
((σnl , σ )) − (σnl ,σ )0

) = |σ |21 , (11)
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with ((v, v)) =
1∑

i=0
(v, v)i for all v ∈ H1(I ), stands the inner product associated

with the norm ‖ · ‖ in H1(I ).
Consequently, given that for all l ∈ N,

∣∣σnl − σ
∣∣2
1 = ∣∣σnl

∣∣2
1 + |σ |21 − 2(σnl ,σ )1, (12)

and, from (4) and (7), we have that

|σnl |21 ≤ O(h) + |σ |21.

Then, from (12), it follows that

|σnl − σ |21 ≤ O(h) + 2|σ |21 − 2|σ |21.

Hence, using (10), we obtain that

lim
l→+∞ ‖σnl − σ‖ = 0. (13)

4) We conclude, finally, reasoning by reduction to the absurd, that the result of this
theorem is satisfied. In fact, if it is not so, there would exist a real number γ > 0
and a sequence (nl ′)l ′∈N with lim

l ′→+∞
nl ′ = +∞ such that

∀l ′ ∈ N,
∥∥σnl′ − σ

∥∥ ≥ γ. (14)

Now then, because the sequence (σnl′ )l ′∈N is bounded in H1(I ), we would deduce,
by following the same way as in the points (1), (2) and (3), that from such a sequence
a subsequence converging to the function σ can be extracted, which is a contradiction
with (14). In short, the result is verified. 	


5 Graphical and numerical examples

The goal of this section is to apply our method in order to compute some approximation
of the solution of Troesch’s problem. To this end, we consider the Troesch’s problem:

u′′ = λ sinh(λ u), 0 ≤ x ≤ 1,

with boundary conditions

u(0) = 0, u(1) = 1.

The expression of the solution of the previous problem is given by (see [11])

σ(x) = 2

λ
sinh−1

[
σ ′(0)

2
sc

(
λx |1 − 1

4
σ ′(0)2

)]
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being sc the Jacobi elliptic function. It is deduced that σ ′(0) = 2(1 − m)1/2, being m
the solution of the equation

sinh( λ
2 )

(1 − m)1/2 − sc(λ|m) = 0.

By applying the method studied in sect. 3, we construct a sequence of B-spline
functions σn , with n ∈ N, approximating the exact solution of the problem (1) for
f (x, u(x)) = λ sinh(λu(x)) with x ∈ [0, 1] and λ = 1, depending on the number of
knots.

Hence, for n = 2 let σ be the solution of the problem (1) and σ2 be its approximating
B-spline. The graphs of the curves defined by σ and σ2 appear in Fig. 1.

For n = 5, n = 9, n = 17, n = 33, we have computed σ5, σ9, σ17 and σ33,
respectively.

Now, for n = 65 let σ be the solution of the problem (1) and σ65 be its approximating
B-spline. The graphs of the curves defined by σ and σ65 appear in Fig. 2.

Table 1 shows the estimation of the mean square error, designed by Em , between the
solution of the boundary value problem and its approximation by a B-spline function
from a partition of n equal intervals of [0, 1], for n = 2, 3, 5, 9, 17, 33, 65. The
expression of Em is as follows

Em =
√∑1000

i=1 (σ (ai ) − σn(ai ))
2

1000
,

where ai , for i=1,...,1000, are random points of I .
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Fig. 1 For n = 2. Graph of the curve defined by σ , that is the solution of the boundary value problem,
the graph of the curve defined by a variational B-spline σ2, that is the approximation of σ and the graph of
both curves (from left to right)
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Fig. 2 For n = 65. Graph of the curve defined by σ , that is the solution of the boundary value problem,
the graph of the curve defined by a variational B-spline σ65, that is the approximation of σ and the graph
of both curves (from left to right)
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Table 1 Table of the estimation
of the relative error between the
solution of the boundary value
problem and its approximation
by a B-spline function from a
partition of n equal intervals of
[0,1]

Number of the knots: n Em

2 6.39449 × 10−2

3 7.05895 × 10−3

5 8.01515 × 10−4

9 9.10052 × 10−5

17 1.03386 × 10−5

33 1.17531 × 10−6

65 1.33558 × 10−7

Table 2 Table of the values of
the exact function σ , the
constructed approximate
function σn and the absolute
error in each x , for
x = 0.1, . . . , x = 0.9

x σ(x) σn(x) |error(x)|

0.1 0.0846612 0.0846569 4.3087 × 10−6

0.2 0.170171 0.170163 8.2374 × 10−6

0.3 0.257394 0.257382 0.0000114304

0.4 0.347223 0.347209 0.0000135755

0.5 0.4406 0.440585 0.0000144522

0.6 0.538534 0.53852 0.0000139102

0.7 0.642129 0.642117 0.0000119684

0.8 0.752608 0.752599 8.67314 × 10−6

0.9 0.871363 0.871358 4.44185 × 10−6

To compare our method with the existing ones in the literature, we have chosen the
paper [3]. Firstly, the solution given in [3] with the collocation method is a discrete
solution, while our solution is a continuous function. Secondly, one can observe that
the computation of the error in Table 3 of [3] for λ = 1 is of the order 10−3.

In order to provide a logical comparison between our method and the method
presented in [3], we have calculated Table 2 taking the same data as Table 1 (for
λ = 1) in [3], we obtained some better computed values of the error presented in
Table 2, reaching the order 10−6.
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